Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Graham Smith,^a* Urs D. Wermuth^a and Jonathan M. White^b

^aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia, and ^bSchool of Chemistry, University of Melbourne, Parkville 3052, Australia

Correspondence e-mail: g.smith@qut.edu.au

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.040 wR factor = 0.117 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The 1:1 proton-transfer compound of 5-sulfosalicylic acid with 4-aminobenzoic acid

The crystal structure of the anhydrous 1:1 proton-transfer compound of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with 4-aminobenzoic acid, *viz*. 4-carboxyanilinium 3-carboxy-4-hydroxybenzenesulfonate, $C_7H_8NO_2^+ \cdot C_7H_5O_6S^-$, displays a hydrogen-bonded polymeric network structure involving primarily all aminium H-atom donors and sulfonate O-atom acceptors, and is propagated through homomolecular cyclic tail-to-tail interactions between the carboxylic acid substituent groups of both cation and anion species. In addition, there are some cation–anion π – π stacking associations.

Comment

The aromatic sulfonic acid 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA) has proved a particularly good acid for the protonation of Lewis bases and the promotion of molecular assembly through hydrogenbonding associations involving all O-atom acceptors of the sulfonate group, together with the carboxylic acid and phenolic H-atom donor groups. In addition, these compounds often incorporate water molecules of solvation which, when present, are usually involved in direct N^+ -H···O(water) rather than N⁺-H···O(sulfonate) associations. Known 5-SSA compounds of this type are with aniline (1:1 anhydrate; Bakasova et al., 1991), theophylline (1:1 monohydrate; Madarasz et al., 2002), trimethoprim (1:1 dihydrate; Raj et al., 2003), 4,4'-bipyridine (1:2 dihydrate; Muthiah et al., 2003), guanidine [1:1 anhydrate (Zhang et al., 2004) and 1:2 monohydrate (Smith, Wermuth & Healy, 2004a)], and a series of bicyclo heteroaromatic Lewis bases (Smith, Wermuth & White, 2004), including quinoline (1:1 trihydrate), 8-hydroxyquinoline (1:1 monohydrate), 8-aminoquinoline (1:1 dihydrate) and quinaldic acid (an anhydrous 1:1:1 quinaldic acid adduct). Also reported are the structures of a series of 1:1 compounds with the 4-halo-substituted anilines [4-fluoroaniline and 4-bromoaniline (both monohydrates), and 4-chloroaniline (a hemihydrate) (Smith et al., 2005)]. We have also determined the structures of the 1:1 compounds with 1,4phenylenediamine (an anhydrate in which the dianionic 5-SSA anion is found) and with brucine (a monohydrate) (Smith, Wermuth & Healy, 2004b).

4-Aminobenzoic acid (PABA), as well as being an essential biological molecule, acting as a bacterial cofactor involved in the synthesis of folic acid, has proved a particularly versatile reagent for structure extension through linear hydrogenbonding associations, through both the carboxylic acid and amine functional groups. This property was recognized by Etter & Frankenbach (1989) as a possible tool for promoting co-crystallization, with the aim of designing noncentrosymReceived 23 December 2004 Accepted 4 January 2005 Online 15 January 2005

organic papers

metric organic materials. However, among the many reported co-crystals of PABA, only one, the 1:1 proton-transfer compound with 3,5-dinitrobenzoic acid (Etter & Frankenbach, 1989), has been found to crystallize in a noncentrosymmetric space group. Other reported compounds with PABA include neutral adducts with compounds such as 4-nitropyridine-Noxide (1:1; Lechat, 1984), 1,3,5-trinitrobenzene (1:1; Lynch, Smith, Byriel & Kennard, 1994), urea (2:1; Smith, Baldry et al., 1997), 4-(4-nitrobenzyl)pyridine (1:1; Smith, Lynch et al., 1997) and 4-aminobenzonitrile (1:1; Smith et al., 2000), as well as a number of proton-transfer compounds. In a small number of these, the carboxylic acid group of PABA ($pK_{a1} = 2.38$) protonates the amino group of the Lewis base, e.g. diethylamine (1:1; Smith et al., 1999) or 2-aminopyrimidine (2:1; Lynch, Smith, Freney et al., 1994). However, in the majority of examples, the amino group of PABA is protonated [3,5dinitrosalicylic acid (2:1; Smith et al., 1995), 2,4,6-trinitrobenzoic acid (1:1; Lynch et al., 1992a), 2,4-dichloroacetic acid (1:1; Lynch et al., 1992b) and (2-carboxyphenoxy)acetic acid (1:1; Byriel et al., 1991)]. An unusual 3:1:1 PABA:2,4,6trinitrobenzoic acid:1,3,5-trinitrobenzene co-crystal is also known (Lynch et al., 1992c).

The crystal structure of the title compound, (I), reported here, is the product of the reaction of 5-sulfosalicylic acid with 4-aminobenzoic acid in 50% aqueous ethanol, [(PABA)⁺-(5-SSA)⁻] (Fig. 1), in which, as expected, the sulfonic acid group of 5-SSA has protonated the amine N atom of PABA. The three H atoms of this anilinium group are subsequently involved in extensive $N^+ - H \cdots O^-$ hydrogen-bonding interactions with O-atom acceptors of four different 5-SSA sulfonate groups $[N \cdots O 2.719 - 2.872 (2) \text{ Å}]$ (Table 1). In addition, there are secondary structure extensions involving the carboxylic acid groups of both the PABA cations and the 5-SSA anions in tail-to-tail homomolecular $R_2^2(8)$ cyclic hydrogen bonds. With 5-SSA, the association is centrosymmetric [O72-H72···O71^{iv} 2.6923 (17) Å], while with PABA, the pairs are glide-related $[O721 - H721 \cdots O711^{v}]$ 2.6303 (19) Å] [symmetry codes: (iv) 1 - x, 2 - y, 1 - z; (v) $1 - x, y, \frac{3}{2} - z$]. Although the planar $R_2^2(8)$ association is very common among carboxylic acids, and is also found as the structure extender in the 5-SSA compounds with 4-chloroand 4-bromoaniline (Smith et al., 2005), the distorted gliderelated association in (I) (Fig. 2) is unusual.

Figure 1

The molecular configuration and atom-numbering scheme for the PABA cation and 5-SSA anion in (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line represents a hydrogen bond.

Figure 2

The glide-related homomolecular PABA carboxylic acid pairs involved in the hydrogen-bonding extending interactions, showing the distortion of the cyclic dimer. For symmetry code, see Table 1. Dashed lines represent hydrogen bonds.

Figure 3

A perspective view of the packing of (I) in the unit cell, viewed approximately down the *b* direction, showing hydrogen-bonding associations as dashed lines. Non-interactive H atoms have been omitted for clarity.

No intermolecular associations involving the phenolic O atom of the 5-SSA anion are present, but there are some cation–anion $\pi - \pi$ ring-stacking interactions [ring centroid separation $C_g \cdot \cdot \cdot C_g$ 3.79 (1) Å and interplanar dihedral angle 6.4 (1)°]. The result in (I) is a three-dimensional framework polymeric structure (Fig. 3).

The structural features of the 5-SSA anions of (I) are similar to those in previously reported compounds. These include the intramolecular OH(phenol)···O(carboxyl) hydrogen bond [2.609 (2) Å], which maintains coplanarity of the carboxyl group and the benzene ring [torsion angle C2-C1-C7-O72] $-179.6(1)^{\circ}$], and the presence of a significant ring- $H \cdots O(\text{sulfonate})$ interaction [C6-H6 \cdots O51 2.893 (2) Å], giving a C6-C5-S5-O51 torsion angle of $-162.6(1)^{\circ}$. Similarly, PABA cations show a slightly greater than usual deviation from the planarity which is almost a standard feature of this acid and its compounds [torsion angle C21-C11- $C71-O711 - 161.1 (2)^{\circ}$]. It is of interest that the cyclic carboxylic acid association is present in the structure of the β -polymorph of the parent PABA (Lai & Marsh, 1967) but not in the α -polymorph (Alleaume *et al.*, 1966), where only intermolecular carboxylic acid-amine interactions are found.

Experimental

The title compound was synthesized by heating equimolar quantities (1 mmol) of 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid) and 4-aminobenzoic acid in 50% ethanol–water (50 ml) for 10 min under reflux. After concentration to *ca* 30 ml, partial room-temperature evaporation of the hot-filtered solution gave palebrown crystal plates of (I) [m.p. 520.2–522.0 K (decomposition)].

Crystal data

~	
$C_{7}H_{8}NO_{2}^{+}\cdot C_{7}H_{5}O_{6}S^{-}$ $M_{r} = 355.31$ Monoclinic, C2/c a = 32.264 (3) Å b = 7.6517 (7) Å c = 12.0672 (11) Å $\beta = 95.242 (2)^{\circ}$ $V = 2966.6 (5) \text{ Å}^{3}$ Z = 8	$D_x = 1.591 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation Cell parameters from 5543 reflections $\theta = 2.2-27.5^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 295 (2) K Cut block, pale brown $0.40 \times 0.30 \times 0.30 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer φ and ω scans 8997 measured reflections 3361 independent reflections 3011 reflections with $I > 2\sigma(I)$	$\begin{aligned} R_{\rm int} &= 0.058\\ \theta_{\rm max} &= 27.5^{\circ}\\ h &= -32 \rightarrow 41\\ k &= -9 \rightarrow 9\\ l &= -13 \rightarrow 15 \end{aligned}$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.117$ S = 1.05 3361 reflections 241 parameters H atoms treated by a mixture of independent and constrained	$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 \\ &+ 1.1096P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\rm max} = 0.001 \\ &\Delta\rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$

independent a

refinement

Table 1		
Hydrogen-bond geometry	(Å, '	°).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$\begin{array}{c} 02 - H2 \cdots 071 \\ N41 - H41A \cdots 052^{i} \\ N41 - H41B \cdots 053^{ii} \\ N41 - H41B \cdots 052 \\ N41 - H41B \cdots 052 \\ N41 - H41C \cdots 051^{iii} \\ 072 - H72 \cdots 071^{iv} \\ 0721 - H721 \cdots 0711^{v} \\ C6 - H6 \cdots 051 \end{array}$	0.78 (2) 0.84 (2) 0.86 (3) 0.93 (2) 0.77 (3) 0.98 (4) 0.93	1.91 (2) 1.93 (2) 2.06 (2) 2.53 (3) 1.84 (2) 1.92 (3) 1.66 (4) 2.52	2.6089 (18) 2.7589 (19) 2.7959 (19) 2.8721 (19) 2.7192 (19) 2.6923 (17) 2.6303 (19) 2.8932 (19)	149 (2) 170 (2) 142 (2) 104 (2) 156 (2) 175 (3) 172 (3) 105

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, +y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) -x + 1, -y + 2, -z + 1; (v) $-x + 1, y, -z + \frac{3}{2}$.

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods, and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement in calculated positions (C–H = 0.93 Å) using the riding-model approximation, with $U_{\rm eq}({\rm H})$ fixed at 1.2 $U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the University of Melbourne, and The School of Physical and Chemical Sciences of the Queensland University of Technology.

References

- Alleaume, M., Salas-Ciminago, G. & Decap, J. (1966). C. R. Acad. Sci. Ser. C, 262, 416–417.
- Bakasova, Z. B., Abdybaliev, D. A., Sharipov, Kh. T., Akbaev, A. A., Ibragimov, B. T., Talipov, S. A. & Ismankulov, A. I. (1991). Uzb. Khim. Zh. pp. 22–25.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin, USA.
- Byriel, K. A., Lynch, D. E., Smith, G. & Kennard, C. H. L. (1991). Aust. J. Chem. 44, 1456–1464.
- Etter, M. C. & Frankenbach, G. A. (1989). Chem. Mater. 1, 10-12.
- Lai, T. F. & Marsh, R. E. (1967). Acta Cryst. 22, 885-893.
- Lechat, J. (1984). Acta Cryst. A40, C-264.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992a). Acta Cryst. C48, 533–536.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992b). Z. Kristallogr. 200, 73-82.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992c). J. Chem. Soc. Chem. Commun. pp. 300–301.
- Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1994). *Acta Cryst.* C50, 2079–2082.
- Lynch, D. E., Smith, G., Freney, D., Byriel, K. A. & Kennard, C. H. L. (1994). Aust. J. Chem. 47, 1095–1115.
- Madarasz, J., Bombicz, P., Jarmi, K., Ban, M., Pokol, G. & Gal, S. (2002). J. Therm. Anal. Calorim. 69, 281–290.
- Muthiah, P. J., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). *Acta Cryst.* E**59**, o2015–o2017.
- Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). *CrystEngComm*, 5, 70–76.
- Smith, G., Baldry, K. E., Byriel, K. A. & Kennard, C. H. L. (1997). Aust. J. Chem. 50, 727–736.
- Smith, G., Bott, R. C. & Lynch, D. E. (2000). Acta Cryst. C56, 1155-1156.

- Smith, G., Byriel, K. A. & Kennard, C. H. L. (1999). Aust. J. Chem. 52, 625–628.
- Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem. 48, 1133–1149.
- Smith, G., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1997). J. Chem. Cryst. 27, 307–317.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2004*a*). *Acta Cryst.* E60, o687–o689.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2004b). Unpublished data.
- Smith, G., Wermuth, U. D. & White, J. M. (2004). *Acta Cryst.* C**60**, 0575–0581. Smith, G., Wermuth, U. D. & White, J. M. (2005). *Acta Cryst.* C**61**, 0105–0109..
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Zhang, X.-L., Chen, X.-M. & Ng, S. W. (2004). Acta Cryst. E60, 0453-0454.